Óleo essencial da Canela (Cinamaldeído) e suas aplicações biológicas.

Cristiane Santos Silva e Silva Figueiredo, Patrícia Viera de Oliveira, Warlison Felipe de Silva Saminez, Roseana Muniz Diniz, João Francisco Silva Rodrigues, Mari Silma Maia da Silva, Luís Cláudio Nascimento da Silva, Marcos Augusto Grigolin Grisotto

Resumo


Introdução: Cinamaldeído (CND) é o principal componente ativo do óleo essencial da canela (Cinnamomum sp) e tem sido amplamente utilizado em atividades biológicas e farmacológicas, tendo sido relatado atividade antimicrobiana, antioxidante, antidiabética, dentre outras. Objetivo: Devido os diversos relatos das propriedades farmacológicas do composto, esse foi escolhido para revisão de literatura. A seleção da bibliografia foi obtida a partir de bases de dados (google scholar, NCBI - National Center for Biotechnology Information, PubMed e Scielo - Scientific Electronic Library Online). Discussão: A composição química do CND tem compostos terpenóides que têm poderosa atividade antimicrobiana contra fungos, bactérias Gram-positivas e Gram-negativas tais como Aeromonas hydrophila, Enterococcus faecalis, Clostridium botulinum, Staphylococcus aureus, Escherichia coli O157: H7 e Salmonella enterica serovar Typhimurium. A atividade anti-inflamatória induz a apoptose e inibi a proliferação celular, nas respostas imunes mediadas por monócitos/macrófagos, além de diminuir a produção de óxido nítrico induzido por lipopolissacáridos de um modo dependente da dose. CND ao ser administrado por via oral em ratos diabéticos demonstrou melhora no conteúdo de glicogênio muscular e hepático aumentando a liberação de insulina. Além disso CND estimulou a angiogênese in vivo e in vitro, regulando positivamente o fator de crescimento endotelial vascular. Conclusão: A partir do que foi relatado constatou-se que o CND possui muitas atividades com potencial farmacológico, mas percebe-se que se faz necessário estudos sobre o(s) mecanismos(s) de ação dessas atividades a fim de se proporcionar o uso seguro e eficaz do cinamaldeído.


Texto completo:

PDF

Referências


Amara, A. A.; El-Masry, M. H.; Bogdady, H. H. Plant crude extracts could be the solution: Extracts showing in vivo antitumorigenic activity. Pak. J. Pharm. Sci. 21:159-171, 2008.

Anand, P.; Murali K.Y.; Tandon, V.; Murthy, P. S.; Chandra, R. Insulinotropic effect of cinnamaldehyde on transcriptional regulation of pyruvate kinase, phosphoenolpyruvate carboxykinase, and GLUT4 translocation in experimental diabetic rats. Chem Biol Interact. Jun 7;186(1):72-81. doi: 10.1016/j.cbi.2010.03.044. 2010.

Burt, S. Essential oils: their antibacterial properties and potential applications in food – a review. International Journal of Food Microbiology 2004; 94: 223–253.

Cabello, C.M.; Bair, W.B.; Lamore, S.D.; Ley, S.; Bause, A.S.; Azimian, S.; Wondrak, G.T. The cinnamon-derived Michael acceptor cinnamic aldehyde impairs melanoma cell proliferation, invasiveness, and tumor growth. Free Radic. Biol. Med., 46, 220–231. 2009.

Chen, H.; Hu, X.; Chen, E.; Wu, S.; McClements, D.J.; Liu, S.; Li, B.; Li, Y. Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocoll. 61, 662–671, 2016.

Chen, W.; Golden, D. A.; Critzer, F. J.; Davidson, P. M. Antimicrobial activity of cinnamaldehyde, carvacrol, and lauric arginate against Salmonella Tennessee in a glycerol-sucrose model and peanut paste at different fat concentrations. J. Food Prot. 78, 1488–1495, 2015. doi: 10.4315/0362-028X.JFP14-599.

Cheng, A.G., McAdow, M., Kim, H.K., Bae, T., Missiakas, D.M., Schneewind, O. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog. 6, e1001036, 2010.

Choi, D. Y.; Baek, Y. H.; Huh, J. E.; et al. Stimulatory effect of Cinnamomum cassia and cinnamic acid on angiogenesis through up- regulation of VEGF and Flk-1/KDR expression. Int Immunopharmacology 2009.

Chuang, L.Y.; Guh, J.Y.; Chao, L.K.; Lu, Y.C.; Hwang, J.Y.; Yang, Y.L.; Cheng, T.H.; Yang, W.Y.; Chien, Y.J.; Huang, J.S. Anti-proliferative effects of cinnamaldehyde on human hepatoma cell lines. Food Chem., 2012.

Commission CP. Chinese pharmacopoeia. Vol. 328. Beijing: Chemical Industry Press; 2005. p. 547.

Gill, A. O.; Holley, R. A. Mechanisms of Bactericidal Action of Cinnamaldehyde against Listeria monocytogenes and of Eugenol against L. monocytogenes and Lactobacillus sakei. Applied and Environmental Microbiology, oct. 2004, p. 5750–5755.

Helander, I. M.; Alakomi, H. L.; Latva-Kala, K.; Mattila-Sandholm, T.; Smid, E. J.; Gorris, L. G. M.; Wright, A. V. Characterization of the action of selected essential oil components on Gram-negative bacteria. J. Agric. Food Chem. 46:3590–3595, 1998.

Ho, S.C.; Chang, K.S.; Chang, P.W. Inhibition of neuroinflammation by cinnamon and its main components. Food Chem. 138, 2275–2282, 2013.

Jayaprakasha, G. K.; Raom, L. J.; Sakariah, K. K. Chemical composition of volatile oil from Cinnamomum zeylanicum buds. Z. Naturforsch. 57(12):990-993, 2002.

Kim, B. H.; Lee, Y. G.; Lee, J.; Lee, J. Y.; Cho, J. Y. Regulatory Effect of Cinnamaldehyde on Monocyte/Macrophage-Mediated Inflammatory Responses. Mediators of Inflammation, 2010.

Kim, M. E.; Na, J. Y.; Lee, J. S. Anti-inflammatory effects of trans-cinnamaldehyde on lipopolysaccharide-stimulated macrophage activation via MAPKs pathway regulation. Immunopharmacology and Immunotoxicology, 2018.

Kwon, H.K.; Hwang, J.S.; So, J.S.; Lee, C.G.; Sahoo, A.; Ryu, J.H.; Jeon, W.K.; Ko, B.S.; Im, C.R.; Lee, S.J.; et al. Cinnamon extract induces tumor cell death through inhibition of NF_B and AP1. BMC Cancer, 10, 392–402, 2010.

Lee, R.; Balick, M.J. Sweet wood-cinnamon and its importance as a spice and medicine. J. Sci. Heal. 1, 61–64, 2005.

López-Mata, M.A.; Ruiz-Cruz, S.; de Jesús Ornelas-Paz, J.; del Toro-Sánchez, C.L.; Márquez-Ríos, E.; Silva-Beltrán, N.P.; Cira-Chávez, L.A.; Burruel-Ibarra, S.E. Mechanical, barrier and antioxidant properties of chitosan films incorporating cinnamaldehyde. J. Polym. Environ. 1–10, 2017.

Mendes, S. J., Sousa, F. I., Pereira, D. M., Ferro, T. A., Pereira, I. C., Silva, B. L., et al. Cinnamaldehyde modulates LPS-induced systemic inflammatory response syndrome through TRPA1-dependent and independent mechanisms. Int. Immunopharmacol. 34, 60–70, 2016.doi: 10.1016/j.intimp.2016.02.012

Rieger, K.A.; Schiffman, J.D. Electrospinning an essential oil: Cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly (ethylene oxide) nanofibers. Carbohydr. Polym. 113, 561–568, 2014.

Sanla-Ead, N.; Jangchud, A. Chonhenchob, P. S. V. Antimicrobial Activity of Cinnamaldehyde and Eugenol and Their Activity after Incorporation into Cellulose-based Packaging Films.

Packaging Technology and Science, 25: 7–1, 2012.

Sartorius, T.; Peter, A.; Schulz, N.; Drescher, A.; Bergheim, I.; Machann, J.; Schick, F.; Siegel-Axel, D.; Schürmann, A.; Weigert, C.; et al. Cinnamon extract improves insulin sensitivity in the brain and lowers liver fat in mouse models of obesity. PLoS ONE, 2014.

Shen, S.; Zhang, T.; Yuan, Y.; Lin, S.; Xu, J.; Ye, H. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control. 47, 196–202, 2015. doi: 10.1016/j.foodcont.2014.07.003

Utchariyakiat, I.; Surassmo, S.; Jaturanpinyo, M.; Khuntayaporn, P.; and Chomnawang, M. T. Efficacy of cinnamon bark oil and cinnamaldehyde on anti-multidrug resistant Pseudomonas aeruginosa and the synergistic effects in combination with other antimicrobial agents. BMC Complement. Altern. Med. 16:158. 2016. doi: 10.1186/s12906-016-1134-9

Wang, Y.; Zhang, Y. Shi, Y.; Pan, X.; Lu, Ping, Y. Antibacterial effects of cinnamon (Cinnamomum zeylanicum) bark essential oil on Porphyromonas gingivalis. Cao.Microbial Pathogenesis, 2018

Wen, P.; Zhu, D.-H.; Wu, H.; Zong, M.-H.; Jing, Y.-R.; Han, S.-Y. Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control. 59, 366–376, 2016.

Yuan, X.; Han, L.; Fu, P.; Zeng, H.; Lv, C.; Chang, W.; Runyon, R. S.; Ishii, M.; Han, L.; Liu, K.; Fan, T.; Zhang, W.; Liu. R. Cinnamaldehyde accelerates wound healing by promoting angiogenesis via up-regulation of PI3K and MAPK signaling pathways. Laboratory Investigation. https://doi.org/10.1038/s41374-018-0025-8, 2017.




DOI: https://doi.org/10.24863/rib.v9i2.143

Apontamentos

  • Não há apontamentos.