

PROGRAMA DE PÓS-GRADUAÇÃO DE MESTRADO EM MEIO AMBIENTE

MATRIZ CURRICULAR

1. Disciplinas Obrigatórias

1.1 Meio Ambiente, Cultura e Sociedade

Ementa: O papel do homem na sociedade e no meio em que vive e as transformações decorrentes ao longo do processo histórico. Sociedade, urbanização e industrialização. Meio Ambiente na sociedade atual: Produção, consumo, cultura de massa e questões ambientais. Globalização e sua relação com o meio ambiente. Desafios para o desenvolvimento sustentável da sociedade atual. A questão ambiental e sua incorporação ao conceito de desenvolvimento, ecodesenvolvimentos e desenvolvimento sustentável. Alternativas para a crise socioambiental.

1.2 Meio Ambiente e Saúde Pública

Ementa: Estudo dos aspectos abióticos, bióticos e socioculturais do ambiente, buscando a relação entre a qualidade ambiental e a saúde humana abordando os impactos do desequilíbrio ambiental. Discussão do processo saúde/doença relacionado com a degradação ambiental, abordando as questões referentes à água, lixo, dejetos, poluição atmosférica e poluição sonora, suas formas de prevenção e de controle. Utilização de ferramentas como a realização de levantamentos, diagnósticos, bioensaios, análises e estudos contextuais que visam caracterizar o meio ambiente de forma a apontar indicadores de qualidade ambiental ou de utilizá-los na realização de monitoramentos que possibilitem a análise de longo prazo das questões socioambientais.

1.3 Planejamento Ambiental

Ementa: Território, territorialidade e identidade. Política Nacional do Meio Ambiente. Indicadores de qualidade ambiental. Planejamento ambiental: organização, escalas, áreas e temas. Instrumentos do Planejamento Ambiental. Etapas e estruturas para o planejamento ambiental.

1.4 Análise de dados ambientais

Ementa: Apresentação de técnicas de análises de dados utilizando a estatística descritiva. Introdução ao conceito de incerteza e aleatoriedade e os métodos probabilísticos. Intervalos de confiança e testes de hipóteses. Análise de variância e planejamento de experimental. Regressão linear simples e correlação.

1.5 Metodologia Científica

Ementa: Introdução. Ciência e conhecimento científico. O método científico. Tipos de pesquisa: quanto à natureza – básica e aplicada, quanto aos objetivos: exploratória, descritiva e explicativa; quanto aos procedimentos: experimental, operacional bibliográfica, estudo de caso, pesquisa ação; quanto ao tratamento dos dados: quantitativa e qualitativa. Ênfase na pesquisa qualitativa aplicada e a sua relação com a operacionalização de ideias. Métodos de pesquisa. Elaboração do um trabalho científico: estrutura e forma. Projeto de pesquisa, relatório e artigo científico. Protocolo de Pesquisa para elaboração de relatórios e artigos prescritivos. O processo de escrita: formulação da problematização, desenvolvimento da argumentação e consistência do trabalho científico.

1.6 Seminários I

Ementa: A disciplina tem por finalidade o aperfeiçoamento do aluno na comunicação científica oral e escrita. A produção de conhecimento. A informação científica como produto e insumo da atividade científica. A importância dos processos de comunicação para a circulação das idéias entre os pesquisadores para o desenvolvimento da ciência. A produção e divulgação do conhecimento científico em revistas nacionais e internacionais da área ambiental. Os canais de comunicação da ciência (formais e informais/impressos e eletrônicos) e sua otimização para o fluxo de idéias entre os pesquisadores. Estruturação de textos científicos. Estruturação de apresentações e diretrizes para a comunicação oral. Clareza e Estilo. Comunicação com editores.

1.7 Seminários II

Ementa: A disciplina tem por finalidade o amadurecimento dos projetos de tese dos alunos, num processo interativo e de socialização de conhecimentos e avanços metodológicos. Cada aluno apresenta e discute seu projeto no seminário, que conta também com docentes e pesquisadores convidados para contribuírem em aspectos relevantes para o desenvolvimento das teses. Os alunos, ao trazerem seus projetos para o debate, serão instruídos de conteúdos interdisciplinares, de acordo com as competências dos demais participantes. Assim, pretendese que ao final do semestre, os alunos estejam aptos ao exame de qualificação.

2. Linha de Planejamento e Qualidade Ambiental

2.1 Ética Ambiental

Ementa: Conceitos e abordagens da ética ambiental. Ética ambiental nas racionalidades filosóficas da cultura ocidental. Ética ambiental nas culturas tradicionais. Ética ambiental e biodiversidade. Ética ambiental e espiritualidade. Ética ambiental e os grandes desafios sócio-ambientais da comunidade nacional e internacional. Ética e educação ambiental. As experiências de construção de valores ético-ambientais nos processos de formação de agentes multiplicadores em comunidades locais.

2.2 Educação Ambiental

Ementa: Histórico do movimento ambientalista e da educação ambiental. Fundamentos teórico-metodológicos da educação ambiental. Tendências da educação ambiental. Legislação brasileira e políticas públicas de educação ambiental. Diagnósticos socioambientais participativos. Metodologias participativas. Pedagogia de projetos. Avaliação em educação ambiental. Abordagem pedagógica de temas socioambientais contemporâneos. Educação ambiental em diferentes contextos: na escola; na comunidade; nos processos de gestão ambiental. Integração de saberes e conhecimentos da área de ciências ambientais.

2.3 Disciplina: Química Ambiental

Ementa: Introdução a Química Ambiental: o ambiente e a ciência da sustentabilidade, a química e a antroposfera e energia, recursos e materiais sustentáveis. Química aquática. Oxidação-redução na química aquática. As interações entre fases e a bioquímica microbiana aquática. Qualidade da Água. Poluição da Água. ETA e ETE. A atmosfera e a química atmosférica. Os particulados na atmosfera. A poluição atmosférica: os poluentes gasosos inorgânicos e orgânicos do ar. O smog fotoquímico. A atmosfera global: aquecimento global, chuva ácida e a destruição do ozônio atmosférico. Química dos solos: geosfera e a geoquímica. O solo e a química ambiental agrícola. Poluição do solo. Tecnologia de controle de poluição da água, ar atmosférico e do solo. Análise química: de águas e água residuárias, de resíduos e sólidos, da atmosfera e dos poluentes do ar e de materiais biológicos e xenobióticos. A química toxicológica. A química toxicológica das substancias químicas. Toxicologia Ambiental.

2.4 Biofísica Ambiental

Ementa: Introdução a biofísica ambiental: unidades, medidas e princípios básicos. Elementos climáticos: radiação, pressão, temperatura e umidade. Fluxos de energia e calor nos ecossistemas. Termodinâmica aplicada às ciências ambientais.

2.5 Geotecnologias aplicadas aos estudos ambientais

Ementa: Geotecnologias na gestão ambiental. Sensoriamento remoto e a produção de dados ambientais. Introdução ao geoprocessamento. Sistemas de Informação Geográfica. Análise de dados espaciais. Geotecnologias no estudo dos relevos. Sistema de Posicionamento Global na coleta de dados ambientais.

2.6 Microbiologia Ambiental

Ementa: Fundamentos da Microbiologia básica, aplicada e Ecologia Microbiana. Descrição e caracterização dos principais microrganismos. Técnicas laboratoriais utilizadas nos estudos de Microbiologia. Fundamentos da Microbiologia Ambiental. Microbiologia do ar, da água e do solo. Biofilmes Microbianos. Processos Microbianos e seus aspectos práticos e a situação dos microrganismos quanto aos fatores de impacto no ambiente.

2.7 Energia e meio ambiente

Ementa: O problema energético global. Planejamento ambiental na matriz energética nacional. Política energética e sustentabilidade. Formas e fontes de energia. Geração e

transmissão de energia. Energias alternativas. Produção de biomassa. Balanços materiais e energéticos. Aspectos econômicos, sociais e ambientais.

3. Saúde e Meio Ambiente

3.1 Epidemiologia em Saúde e Ambiente

Ementa: Discussão do processo saúde-doença à luz do processo histórico social e dos principais indicadores usados na mensuração das enfermidades e agravos que acometem as populações. Relação dos Indicadores ambientais com a condição de saúde humana. Aplicação dos fundamentos teóricos, metodológicos e técnicos necessários à utilização dos conhecimentos epidemiológicos na prática de pesquisa e ensino interdisciplinar em Saúde e Ambiente.

3.2 Políticas Públicas e Saneamento Ambiental

Ementa: Sociedade, meio ambiente e desenvolvimento. Política nacional do meio ambiente e seus instrumentos de proteção ambiental; Atores e Instrumentos de política ambiental. Tecnologias "modernas", tecnologias "alternativas", e "novas tecnologias" na política ambiental. A política ambiental no Brasil e a problemática ambiental local e regional. Os desafios do desenvolvimento sustentável. Ecodesenvolvimento, biodiversidade e globalização. Os problemas ambientais globais e suas implicações, fundamentos históricos e dimensões da educação ambiental, subsídios para o desenvolvimento da educação ambiental e qualidade de vida, planejamento e elaboração de programas de educação ambiental.

3.3 Biorremediação

Ementa: Introdução ao metabolismo microbiano. Bioenergética e biossíntese celular microbiana. Crescimento e metabolismo microbiano. Aspectos microbiológicos da biodegradação e transformações de poluentes orgânicos e inorgânicos Processos biológicos de tratamento de águas e resíduos. Biorremediação de áreas impactadas. Indicadores biológicos de qualidade ambiental. Métodos clássicos e avançados para o estudo de micro-organismos de interesse ambiental. Estudos de metagenoma e transcriptoma em ambientes impactados e naturais.

3.4 Bioprospecção de Produtos Naturais Bioativos

Ementa: Modelos experimentais de avaliação de produtos naturais; Avaliação da atividade antinflamatória; Atividade imunossupressora, imunomoduladora e imunoestimuladora; Atividades farmacológicas; atividade antitumoral; atividade antimicrobiana; Fracionamento Bio-monitorado; Preparação e validação de bioprodutos; Propriedade intelectuar e transferencia de tecnologia.

3.5 Biologia Molecular Aplicada à Pesquisa Ambiental

Ementa: A disciplina visa proporcionar aos alunos o aprendizado dos conceitos báscicos de Biologia Molecular aplicados à pesquisa científica na caracterização, diagnóstico e elucidação

de doenças mediadas por vetores, doenças tropicais, doenças transmissíveis através da água, solo e alimentos. Estudo das interrelações existentes entre os agentes provocadores de doença e o ambiente. Neste contexto, esta disciplina abordará as principais técnicas de Biologia Molecular utilizadas para a manipulação e a análise do material genético na pesquisa básica e aplicada, nos campos da pesquisa ambiental e, principalmente, no diagnóstico de doenças infecciosas.

3.6 Indicadores Ambientais na Ecotoxicologia

Ementa: Conceitos. Vias de Exposição. Fases de Intoxicação. Determinantes ambientais em processos ecotoxicológicos. Dispersão dos Poluentes. Toxicologia de Praguicidas. Biomonitoramento. Bioindiacadores. Estudo de Caso.