

2	UNIVERSIDADE CEUMA - UNICEUMA
	PRÓ-REITORIA DE PÓS-GRADUAÇÃO, PESQUISA E EXTENSÃO
4	COORDENAÇÃO DO MESTRADO EM MEIO AMBIENTE
6	Ana Márcia Rabelo Vieira Mendes
8	Sílica modificada com azul de meldola e nanopartículas de Sm ₂ O ₃
	como sensor eletroquímico de agrotóxicos
10	
12	Orientador: Dr. Paulo Cesar Mendes Villis
	Coorientadora: Dra. Maria Raimunda Chagas Silva
14	
16	
18	
20	São Luís/MA
	2021

¹Mestrado em Meio Ambiente pela Universidade CEUMA.

22 **RESUMO**

O material cerâmico, denominado SiO₂/NPsSm₂O₃/C-grafite/MB (área superficial

- 24 235 ±10 m²g⁻¹), obtido pelo processo sol-gel e imobilizado por adsorção em corante catiônico Meldola Azul (MB) tem o objetivo de desenvolver sensores eletroquímicos
- na detecção de pesticidas. A textura macroscópica/microscópica, a estrutura molecular
 / cristalina e as propriedades físico-químicas de SiO₂/NPsSm₂O₃/C-grafite/MB foram
- 28 caracterizadas por técnicas espectroscópicas, térmicas e eletroquímicas, tais como: espectroscopia na região do infravermelho com transformação de Fourier (FT-IR) e as
- 30 propriedades eletroquímicas por Voltametria Cíclica (CV) e Voltametria de Pulso Diferencial (VPD). O VPD apresentou os melhores resultados e a resposta linear ao
- 32 Glifosato na faixa de concentração de Iap (μ A cm⁻²) de 0,99 7,94 (μ mol L⁻¹; R² = 0,9963; n = 8). Os valores calculados para o limite de detecção (LD = 3σ /declive) e o
- 34 limite de quantificação (LQ = 10σ /declive) foram de 0,051 e 0,169 µmol L⁻¹ (50,84 e 169,47 nmol L⁻¹, respectivamente). SiO₂/NPsSm₂O₃/C-grafite/MB foi utilizado com
- 36 potencial promissor para o desenvolvimento de sensores eletroquímicos, utilizando eletrodos de trabalho de pasta de carbono para detecção de Glifosato.
- 38 Palavras-chave: nanomaterial; sensor; nanopartículas de óxido de samário; azul de meldola; glifosato

40

42

44

46

48 Capítulo I: Artigo a ser submetido ao Journal Applied Electrochemistry ISSN 0021-891X.

50

52

58

82

MELDOLA BLUE MODIFIED SILICA AND Sm₂O₃ NANOPARTICLES AS AN ELECTROCHEMICAL PESTICIDE SENSOR

Ana Márcia Rabelo Vieira Mendes¹, Rodrigo Vieira Blasques², Maria Alessandra
 Azevedo Pereira¹, Bianca Martins Nascimento¹, Thiago da Cruz Canevari³, Leliz
 Ticona Arenas⁴, María Isabel Pividori ⁵, Wolia Costa Gomes¹, Maria Raimunda
 Chagas Silva¹ e Paulo Cesar Mendes Villis^{1*}

¹ Electrochemistry and Biotechnology Laboratory – EBL, University of CEUMA - UNICEUMA, 65.065-470, São Luís, MA, Brazil

²Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE), Federal
60 University of Rio de Janeiro (UFRJ), 21.941-450, Rio de Janeiro, RJ, Brazil

³Escola de Engenharia, Universidade Presbiteriana Mackenzie, Higienópolis, São Paulo, SP, Brazil

62 ⁴Laboratory of Solids and Surfaces, Institute of Chemistry, Federal University of Rio Grande do Sul – UFRGS, 91501-970, Porto Alegre, RS, Brazil

64 ⁵ Grup de Sensors i Biosensors, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

Abstract

- 66 The ceramic material, called SiO₂/NPsSm₂O₃/C-graphite/MB (specific surface area 235 $\pm 10 \text{ m}^2\text{g}^{-1}$), obtained by the sol-gel process and immobilized by adsorption in
- 68 Meldola Blue cationic dye (MB) has the objective of developing electrochemical sensors in the detection of pesticides. The macroscopic/microscopic texture, the
- 70 molecular/crystalline structure and the physical-chemical properties of SiO₂/NPsSm₂O₃/C-graphite/MB were characterized by spectroscopic, thermal and
- 72 electrochemical techniques, such as: spectroscopy in the infrared region with Fourier transformation (FT-IR) and the electrochemical properties by Cyclic Voltammetry
- 74 (CV) and Differential Pulse Voltammetry (VPD). VPD showed the best results and the linear response to Glyphosate in the concentration range from I_{ap} (μ A.cm⁻²) of 0.99 -
- 76 7.94 (µmol L⁻¹; R² = 0.9963; n = 8). The calculated values for the detection limit (LD = 3σ / slope) and the quantification limit (LQ = 10σ /slope) were of 0.051 and 0.169
- 78 μmol L⁻¹ (50.84 and 169.47 nmol L⁻¹, respectively). SiO₂/NPsSm₂O₃/C-graphite/MB was used with promising potential for the development of electrochemical sensors,
- 80 using working electrodes paste carbon for the detection of Glyphosate.

Keywords: ceramic material; samarium oxide nanoparticles; sensor; Meldole Blue; pesticide

 ^{*}Correspondence: Electrochemistry and Biotechnology Laboratory (EBL), University of CEUMA
 (UNICEUMA), 65.065-470, São Luís, MA, Brazil. Telephone/Fax: +55 98 3214-4127.
 E-mail address: paulo.villis@ceuma.br (P. C. M. Villis).

86 1. INTRODUÇÃO

Os agrotóxicos de uma maneira geral têm beneficiado a agricultura com a proposta de aumentar a produtividade e a qualidade dos produtos ou até mesmo, no intuito de reduzir o trabalho e a energia desprendida no processo produtivo [1]. De fato, estes

- 90 objetivos foram alcançados, principalmente nas últimas décadas, com o desenvolvimento da agricultura no País. No entanto, o uso indiscriminado de
- agrotóxicos, sem um estudo mais criterioso, tem causado impactos ocupacionais e ambientais assim como um comprometimento cada vez maior da qualidade

94 ambiental e da vida das populações [2, 3].

Em virtude disso, a análise eletroquímica, é descrita como uma alternativa para a

96 análise de agrotóxicos e seus subprodutos, tendo como atrativos a velocidade, a sensibilidade e o baixo custo operacional, quando comparado com outras

98 metodologias analíticas, tais como, as técnicas cromatográficas [4, 5].

- Os primeiros compostos utilizados como agrotóxicos eram substâncias tóxicas de 100 origem natural, tais como o piretro e a nicotina, além de espécies inorgânicas contendo mercúrio, enxofre ou cobre. Graças ao avanço tecnológico, novos
- 102 compostos foram desenvolvidos atualmente, os mais usados são os das classes dos organofosforados e organoclorados, que compreendem uma grande variedade de
- 104 compostos químicos com diferentes grupos funcionais e com diferentes modos de ação, biotransformação e eliminação. Os agrotóxicos geralmente são tóxicos e
- 106 causam problemas de poluição ambiental e a saúde do manipulador [4].

O Glifosato (GF) (Figura 1) pertence ao grupo químico das glicinas substituídas
 108 N(fosfometil)glicina, cuja fórmula molecular é C₃H₈NO₅P. É classificado como um

agrotóxico organofosforado, mais especificamente, um fosfonato. É um produto

- 110 muito conhecido e aceito no mercado, largamente utilizado devido a sua capacidade de remover as ervas daninhas antes do plantio propriamente dito, assim como se
- 112 tornou prática frequente seu uso no controle de ervas daninha em pastagens, canteiros e jardins nas cidades [2].

114

Figura 1. Estrutura molecular do Glifosato (GF)

- 116 O Glifosato é classificado como herbicida de uso agrícola, de toxicidade I, pouco tóxico, faz parte do mercado mundial de agrotóxicos. Apresenta baixa toxicidade
- 118 para mamíferos, peixes e pássaros, mostrando não haver bioacumulação nos alimentos e ser biodegradado em produtos naturais, tem baixa permanência no
- ambiente, pois se degrada rapidamente, sobretudo no meio aquático. Recentemente,Muñoz et al. mostraram que o glifosato tem efeitos na saúde humana, principalmente
- 122 como um desregulador endócrino (EDC) e sua capacidade cancerígena [6]. Contudo, vale ressaltar que mesmo não tendo alta persistência ativa no ambiente, suas
- 124 composições são tóxicas para alguns tipos de peixes e outros organismos aquáticos
 [7] e que é um agrotóxico não eletroativo e de difícil detecção com métodos
- eletroquímicos convencionais. Atualmente os métodos mais utilizados de detecção
 são a cromatografia (HPLC), cromatografia gasosa e a eletroforese capilar [8].
- 128 Neste contexto, a síntese de um material em escala nanométrica e o uso em elétrodos cerâmicos a base de sílica tem despertado grande interesse nos últimos anos em
- 130 decorrência das suas propriedades químicas e físicas incomuns, tais como alta área superficial, porosidade controlada e resistência mecânica. Estas propriedades
- químicas e físicas são importantes para conseguir um melhor sensor eletroquímico[1, 9–12].
- 134 Enquanto materiais nanoestruturados têm atraído muita atenção aos pesquisadores, o potencial destes materiais ativados por íons samários não foram totalmente
- 136 explorados. As terras raras (RE) são íons dopantes populares, não apenas devido as suas propriedades espectroscópicas interessantes, mas também devido a sua potencial
- aplicação no desenvolvimento de dispositivos opto-eletrônicos, tais como
 amplificadores de fibra, lasers, até lasers de conversão e fósforos [13–20], já os
- 140 corantes catiônicos, como o Azul de Meldola (MB), adsorvidos na superfície de um elétrodo, ajudando na eletro-oxidação de determinados analitos, aumentando a
- 142 velocidade de reação [21].

O azul de Meldola (8-dimetilamino-2,3-benzofenoxzina), abreviado como MB ou

- AM, é um corante pertencente à família das feroxazinas, cujo potencial formal é de 175 mV vs. ECS (eletrodo de referência calomelano saturado) em pH = 7, de massa
- 146 molar 310,78 g/mol, foi sintetizado originalmente pelo pesquisador Raphael Meldola

em 1879 [22]. Ele é um mediador redox de fenoxazina contendo o grupo naftalina

- 148 [22, 23]. Sua forma oxidada, que possui coloração azul, é facilmente reduzida à forma incolor, chamada de azul de leucometileno. Em sua estrutura, pode-se verificar
- 150 um benzeno fundido a uma fenoxazina na posição angular e um substituinte dimetilamino (região catiônica da molécula). A Figura 2 apresenta a estrutura
- 152 molecular do corante Azul de Meldola.

154 Figura 2. Estrutura molecular do corante catiônico MB

Certos corantes orgânicos, como o MB [24], quando fixados a superfície de um

- 156 elétrodo, devido ao seu baixo potencial formal, têm sido utilizados como mediador de transferência de elétrons, permitindo a eletro-oxidação de determinados analitos,
- 158 com isso aumentando a velocidade de reação permitindo a transferência de elétrons na superfície eletródica em um processo redox [25].
- 160 O MB é utilizado como corante na fabricação de tintas, papéis e em indústrias têxteis. Além disso, considerando o campo de desenvolvimento de sensores e
- 162 biossensores, o MB também é vastamente aplicado como componente para detecção de moléculas de interesse, como por exemplo, glicose, piruvato, NO, glutamato,
- 164 etanol e NADH [26]. Como exemplo, pode-se citar o estudo que mostrou a modificação da superfície de um compósito cerâmico-carbono condutor, composto
- por SiO₂/TiO₂/grafite, com o objetivo de imobilizar as espécies Sb₂O₅ em sua
 superfície, utilizando para adsorção o corante catiônico eletroativo (azul de meldola)
- 168 e construção de um elétrodo cerâmico de carbono para imobilização em sua superfície [27–29].
- O trabalho investiga o novo nanomaterial cerâmico denominado SiO₂/NPsSm₂O₃/C grafite/MB como potencial promissor para o desenvolvimento de sensores
- 172 eletroquímicos, através da construção de elétrodos de pasta de carbono, utilizando-o para a detecção de agrotóxicos, como o Glifosato.

174 **2. EXPERIMENTAL**

2.1. Reagentes, Química e Soluções

- 176 Os sais do íon metálico e as nanopartículas do óxido de samário (NPsSm₂O₃), assim como os demais reagentes para os experimentos e ensaios foram de pureza analítica e
- adquiridos comercialmente: ortossilicato de tetraetila (TEOS, Sigma-Aldrich, 98%);
 nanopartículas de óxido de samário (III) (Sigma-Aldrich , 99% ≤ 100 nm); grafite em
- 180 pó (Sigma-Aldrich, 99,99%) e azul de meldola (Merck, 99%).

Os solventes utilizados foram o etanol absoluto (Sigma-Aldrich, 99,9%), metanol

- absoluto (Sigma-Aldrich, 99,9%) e o HCl (Merck, 37%). A solução tampão fosfatosalino (PBS, pH 7,3 \pm 0,1) foi preparada pela combinação de KH₂PO₄ 0,1 mol L⁻¹,
- Na₂HPO₄ 0,1 mol L⁻¹, NaCl 0,1 mol L⁻¹ e NaOH 0,1 mol L⁻¹. Assim como, a de
 Ferrocianeto de potássio 5,0 mmol L⁻¹ e, cada concentração da solução tampão era
- 186 M/15 (M = mol L⁻¹). Os valores de pH das soluções resultantes foram determinados usando um medidor de pH e ajustados em conformidade. Todas as soluções aquosas
- 188 foram preparadas com água ultrapura, obtida de um sistema Milli Q Plus (Millipore).

2.2 Instrumentação

- 190 O método Brunauer-Emmett-Teller (BET) foi empregado para calcular as áreas de superfície específicas (S_{BET}), e o método BJH foi empregado para estudar a
- distribuição de poros de SiO₂/NPsSm₂O₃/C-grafite/MB. As amostras foram
 previamente desgaseificadas a 120°C sob vácuo, durante 12 h em um instrumento
- 194 Tristar Kr 3020 Micromeritics, da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.
- A Espectroscopia de Infravermelho com Transformada de Fourier (FT-IR) foi realizada na forma sólida em pastilhas de KBr (2,0 a 3,0 mg do composto para cada
- 198 100,0 mg de KBr), em um Espectrofotômetro Shimadzu IR Prestige-21, com 4 cm⁻¹
 de resolução e 50 varreduras acumulativas, da Universidade Federal do Maranhão
- 200 (UFMA), São Luís, MA, Brasil.

Difração de raios-X em pó (DRX) foi realizada via método por pó com radiação
202 CuK_α (tubo selado) em um difratômetro automático de pó da marca Rigaku Denki de

geometria θ - 2 θ com detector de cintilação, do Instituto Federal do Maranhão

204 (IFMA), São Luís, MA, Brasil.

As morfologias do SiO₂/NPsSm₂O₃/C-grafite/MB foram analisadas por meio de um
 microscópio eletrônico de varredura FEI Quanta 400 equipado com sistema de
 microanálise por espectrometria de raios-X (EDS) Bruker X-Flash 4300, com

208 detector silicone drift, janela ultrafina de 40 mm². As amostras foram montadas sobre uma porta amostra de alumínio, utilizando-se fota de carbono duplas face, da

210 Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.

Os resultados da Ressonância Magnética Nuclear de Silício (RMN ²⁹Si), em estado

212 sólido, foram obtidos a temperatura ambiente em um aparelho Espectrômetro Bruker AC 300P, operando em 59,6 MHz para ²⁹Si, da Universidade Estadual de Campinas

214 (UNICAMP), São Paulo, SP, Brasil.

O estudo de comportamento térmico foi realizado por análise termogravimétrica em

- um analisador térmico simultaneo *Jupiter* (*Modelo* STA 449 F3), executado através
 do *Software Proteus*, onde 26 mg de amostra foi avaliada em cadinhos de alumina
- 218 tarados anteriormente. As condições de análise foram: Temperatura inicial 24,5 °C, temperatura final 1298,5 °C, taxa de aquecimento de 10 °C min⁻¹; Nitrogênio com
- fluxo de 20 mL min⁻¹. As curvas foram avaliadas no software TA 60 (Shimadzu Japão), da Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil.
- As medições eletroquímicas foram realizadas num potenciostato-galvonostato*Autolab* Tipo PGSTAT101, da marca Methrom com software *Nova 2.1* para coleta e
- análise de dados, da Universidade CEUMA UNICEUMA, São Luís, MA, Brasil.
 Todos os experimentos foram realizados em uma célula eletroquímica composta por
- um elétrodo de trabalho de pasta de carbono (ET) , elétrodo de referência Ag/AgCl
 (3.0 mol L⁻¹ KCl) e contra-elétrodo de platina (Pt). Um medidor de pH *Metrohm*
- 228 (modelo 827) foi usado para pH medição.

2.3. Preparação do sensor

230 2.3.1. Síntese do material SiO₂/NPsSm₂O₃/C-grafite via método Sol-Gel

A superfície da sílica gel (SiO₂) foi modificada com nanopartículas de óxido de
samário, conforme a metodologia descrita por Blasques et al. [30]. A preparação de

SiO₂/NPsSm₂O₃ foi realizado pelo método Sol-gel. Este procedimento, já foi testado

- 234 em experimentos preliminares e suas etapas são descritas: adicionou-se 0,6 ml de ácido clorídrico concentrado em 68 ml de uma solução de TEOS dissolvida em uma
- 236 mistura de 68 ml de etanol absoluto e 5,0 ml de água deionizada. Esta mistura foi mantida sob refluxo por 2h a 60°C. O procedimento visa a pré-hidrólise do TEOS,
- cuja cinética de reação com água aciculada é bastante lenta. Após esta etapa, 26,0 ml
 de NPsSm₂O₃/ETOH (1:4) e 0,6 ml de ácido clorídrico concentrado foram
- adicionados a mistura e em seguida, agitada por mais 20 min para homogeneização.Finalmente, 3,0 g de carbono grafite (C-grafite) foram adicionados à mistura e
- 242 agitados por mais 25 min em temperatura ambiente, formando um material no estado gel. Posteriormente, o material gelatinoso foi levado a um banho ultrassônico por 12
- h para acelerar o processo de gelificação, impedindo a precipitação das partículas do
 C-grafite. Após gelatinização, o material foi deixado em repouso a 45 °C por 5
- (cinco) dias até a completa evaporação do solvente. O xerogel sintetizado foi moído
 e o pó foi inicialmente lavado com EtOH/H₂O (1:1) em um aparelho Soxhlet por 2 h
- e depois seco sob vácuo (10⁻³ Torr) para remover os resíduos de solventes, conforme a Figura 3A.

250 2.3.2. Síntese do material SiO₂/NPsSm₂O₃/C-grafite/MB por adsorção

Adicionou-se 1,0 g do SiO₂/NPsSm₂O₃/C-grafite em 50,0 ml de uma solução aquosa
de MB de 1,0 x 10⁻⁴ mol L⁻¹ e deixou-se sob agitação por 2 h para a homogeneização. Em seguida, lavou-se o material com água deionizada e etanol (1:1) para remoção do

254 excesso de material não adsorvido e seco em temperatura ambiente por 48 h. O material foi denominado de SiO₂/NPsSm₂O₃/C-grafite/MB, conforme a Figura 3B.

Figura 3. (A) Preparação do nanomaterial cerâmico pelo método Sol-gel e (B) por adsorção

258 A Figura 4 mostra a estrutura idealizada da adsorção do MB no SiO₂/NPsSm₂O₃/Cgrafite.

260

Figura 4. Representação da estrutura idealizada do material SiO2/NPsSm2O3/C-grafite/MB

262 2.3.3. Estudos Eletroquímicos

O estudo do comportamento eletroquímico de SiO₂/NPsSm₂O₃/C-grafite/MB como sensor na detecção de Glifosato foi utilizada a técnica de Voltametria Cíclica (VC) e

a Voltametria de Pulso Diferencial (PDV), com ou sem a presença de solução aquosa 266 de glifosato.

As medições de Voltametria Cíclica de SiO₂/NPsSm₂O₃/C-grafite/MB foram registradas em 20,0 ml de solução tampão salino de fostato (PBS; pH ~7,3) utilizada 268 como eletrólito e em presença de 5,0 mmol L⁻¹ de K₃[Fe(CN)₆] / K₄[Fe(CN)₆] e

- velocidade de varredura (v) de 50 mV s⁻¹ e o potencial de varredura de -0.3 a 0.6 V 270 vs. Ag/AgCl para o ET contendo C-grafite.
- Para CV e a otimização dos parâmetros de SiO₂/NPsSm₂O₃/C-grafite/MB na 272 presença de solução de glifosato, foram utilizados como eletrólito suporte, 20,0 ml de
- solução tampão fosfato salino (PBS) a 0,1 mol L^{-1} (pH 7,3±0,1) e concentração de 274 glifosato de 1,0 µmol.L⁻¹. O glifosato foi diluído na solução de PBS e a resposta
- eletroquímica da Voltametria de Pulso Diferencial (DPV) foi analisada com 276 concentrações de solução glifosato $(10^{-3} \text{ mol.L}^{-1})$ entre 0,99 e 7,94 (µmol.L⁻¹), a pH

278
$$7,3\pm 0,1$$
 e velocidade de varredura igual a 50 mV s⁻¹.

A faixa de potencial aplicada para DPV foi entre 0,00 e -0,16 V, com taxa de

varredura de 50 mV s⁻¹. Nos voltamogramas DPV, a linearidade nas amostras foi 280 verificada em concentrações que variam de $0.99 - 7.94 \mu mol L^{-1}$ para uma solução

de glifosato (10^{-3} mol L⁻¹), analisando cada concentração em triplicata. 282

3.7.1 Preparação do elétrodo de trabalho

- O elétrodo de trabalho foi preparado a partir de uma pasta com 80% de C-grafite e 284 20% de SiO₂/NPsSm₂O₃/C-grafite/MB na presença de 2 gotas (0,1 mL) de óleo
- 286 mineral (Nujol). Macerou a mistura em um gral e após a homogeneização, adicionou-se álcool para fixar a pasta de carbono. Pressionando a pasta de
- SiO₂/NPsSm₂O₃/C-grafite/MB em forma de disco (3,0 mm), colocando-a num tubo 288 de politetrafluoretileno, conforme a Figura 5.
- 290 O eletrodo de trabalho de pasta de carbono preparado de SiO₂/NPsSm₂O₃/Cgrafite/MB está apresentado na Figura 5.

292 Eletrodo Pasta de Carbono

Figura 5. Representação da montagem do elétrodo de trabalho (elétrodo pasta de carbono), contendo o SiO₂/NPsSm₂O₃/C-grafite/MB

3. RESULTADOS E DISCUSSÕES

296 3.1 Caracterização do material

Foram obtidas as isotermas de adsorção e dessorção de N₂ com o objetivo de estudar
as diferenças de texturas (área superficial, diâmetro e volume de poros) de
SiO₂/NPsSm₂O₃/C-grafite/MB. A Figura 5 (a) mostra a adsorção-dessorção
isotérmicas de N₂ e a Figura 5 (b) o gráfico da distribuição do tamanho de poro para
SiO₂/NPsSm₂O₃/C-grafite/MB. De acordo com a Figura 5 (a), o material exibiu
isotema do tipo I com caraterística marcante no formato côncavo sobre o eixo P/Po
[17]. A distribuição heterogênea dos poros foi confirmada pelo resultado mostrado
na Figura 5 (b), onde o material apresenta tamanho médio de poros menor que 4 nm
e volume de poros de 0.040 ± 0.001 cm³g⁻¹. A característica de material microporoso

306 deve-se ao tratamento ácido e a imobilização da MB que mostram estreita distribuição de diâmetro de poros [31, 32].

310 Figura 5. (a) Isotermas de adsorção e dessorção de SiO₂/NPsSm₂O₃/C-grafite/MB e em (b) Curva de distribuição de tamanho de poros das amostras de SiO₂/NPsSm₂O₃/C-grafite/MB

312 **3.2 Espectroscopia de Infravermelho com Tranformada de Fourier (FT-IR)**

Uma das técnicas mais importante para caracterização de materiais é a

espectroscopia FT-IR. Na Figura 6 são mostrados os espectros de FT-IR do composto (a) SiO₂/NPsSm₂O₃/C-grafite, (b) SiO₂/NPsSm₂O₃/C-grafite/MB. O

- 316 espectro FT-IR de SiO₂/NPsSm₂O₃/C-grafite/MB mostrou um pico característico de uma vibração de alongamento de O-H na faixa de 3000 a 3400 cm⁻¹, que é
- 318 característico da estrutura sílica gel devido aos grupos silanóis e a água remanescente adsorvida durante a síntese do material e mostrou vibrações de deformação axial do
- hidrogênio ligado ao oxigênio de C-O em 3672 cm⁻¹ e em 2356 cm⁻¹, mostrou um

pico característico do monóxido de carbono formado através da interação dos átomos

322 das moléculas reagentes.

A banda vibracional observada na região de 1100 a 1200 cm⁻¹ corresponde aos

- estiramentos dos grupos siloxanos v_{as} (Si-O-Si). Na região de 452,0 cm⁻¹ foi observado uma banda vibracional que é característico da ligação δ (Si-O-Si), assim
- 326 como em 802 cm⁻¹ um pico do v_s (Si-H) indicado a presença de grupos silanóis (Si-OH).
- Na região do espectro entre 1650 e 3448 cm⁻¹ foram observados bandas características das vibrações angulares das moléculas de água (H₂O), assim como na
- banda de 952 cm⁻¹ foi observada uma banda de absorção para SiO₂/NPsSm₂O₃,
 devido à formação da ligação Si-O-Sm na interface das partículas de SiO₂/NPsSm₂O₃

332 [32–34].

Para o espectro FT-IR de SiO₂/NPsSm₂O₃/C-grafite/MB foi observado vibrações

- características do N-H na banda 3400 cm⁻¹ e de alongamento do C-H a 2925 cm⁻¹.
 Observado também nas faixas entre 1496 cm⁻¹ e 1334 cm⁻¹ vibrações características
- 336 de alongamento do C = C e C-N, o que nos levar a inferir à forte interação entre NPsSm₂O₃ e MB.
- 338 No espectro FT-IR da banda Sm_2O_3 , foi mostrado em 680 cm⁻¹ uma deformação para o Sm-O-H e em 1625 cm⁻¹ um pico de flexão para a H₂O. Já o espectro FT-IR dos
- 340 NPsSm₂O₃/MB mostra um pico característico em 1705 cm-¹ e um pico mais fraco foi observada em 1220 cm⁻¹ o que nos indica que são devido às vibrações do C = O e C-
- OH dos NPsSm₂O₃/MB. Ainda sobre o espectro FT-IR de SiO₂/NPsSm₂O₃/C-grafite/MB foi observado pico característico em 3450 cm⁻¹ para vibrações de
- alongamento do O-H [11, 35]. Quando o MB foi incorporado nos NPsSm₂O₃, as
 bandas de vibração de SiO₂/NPsSm₂O₃/C-grafite/MB foram deslocadas. Portanto,
- as mudanças na banda de vibração confirmaram a interação entre o MB e os
 NPsSm₂O₃ [32, 33].

Figura 6. Espectros de FT-IR dos materiais (a) SiO₂/NPsSm₂O₃/C-grafite e, (b) SiO₂/NPsSm₂O₃/Cgrafite/MB e em (c) o SiO₂/NPsSm₂O₃/C-grafite/MB em destaque

3.3 Difração de Raios X (DRX)

- A Figura 7 mostra o difratograma de Raios X obtido a partir de SiO₂/NPsSm₂O₃/C-grafite/MB, a fim de avaliar a dispersão de NPsSm₂O₃ na matriz de sílica. A
- 354 incorporação desse óxido na matriz SiO₂ visa aumentar a estabilidade e o número de sítios ácidos, melhorando o desempenho do material para aplicações eletroquímicas,
- 356 onde o SiO₂/NPsSm₂O₃ atua como matriz suporte. Um pico intenso é observado no difratograma a 26,5° (2Φ) de uma fase cristalina, indicando a presença de C-grafite
- 358 [35]. Três picos estendidos são observados entre 42,3° e 54,5° (2Φ), indicando a presença de óxido de samário, que possui uma estrutura cristalina cúbica, sugerindo a
 360 presença de Sm³⁺ no nanomaterial cerâmico.

A ausência de picos bem definidos no difratograma de Raios X apresentado na

- Figura 10 indica que não há a presença de uma estrutura cristalina no material. Issoevidencia que o material é amorfo. Os pequenos picos indicados pelo símbolo (o) no
- difratograma indicam a presença de óxido de samário(III) orgânico (Sm-org) e
 inorgânico (Sm-inorg) na amostra [36, 37]. Entretanto, a pequena intensidade desses

picos se deve provavelmente à pequena quantidade de samário incorporada durante a síntese e ao fato que o óxido de samário presente se encontre na forma de
nanopartículas.

370 Figura 7. Difratogramas de Raios X em baixo grau para o SiO₂/NPsSm₂O₃/C-grafite/MB

3.4 Imagens MEV-EDS

- As imagens obtidas de MEV da amostra de SiO₂/NPsSm₂O₃/C-grafite e
 SiO₂/NPsSm₂O₃/C-grafite/MB são apresentadas na Figura 8 (a-d). Observar-se
- diferenças na formação da microestrutura dos materiais. A amostra de
 SiO₂/NPsSm₂O₃/C-grafite é constituída por uma superfície rugosa compacta e a
- amostra de SiO₂/NPsSm₂O₃/C-grafite/MB apresenta uma morfologia compacta com homogênea distribuição dos elementos constituintes, como comprovado pela sonda
- 378 EDS.

380

Figura 8. Micrografias obtidas por MEV das amostras de SiO₂/NPsSm₂O₃/C-grafite (a) 1500x; 20 μ m, SiO₂/NPsSm₂O₃/C-grafite/MB, (b) 500x; 50 μ m, (c) x2.000; 10 μ m e (d) 11.000x; 1 μ m.

No espectro de EDS realizado entre 0 e 10 Kev (Figura 9), foi observado a presença
de Si, O e C, sem a formação de domínios micrométricos de MB, sílica ou
NPsSm₂O₃.

390

Figura 9. Espectro de EDS do material SiO₂/NPsSm₂O₃/C-grafite/MB

392 **3.5 Ressonância Magnética Nuclear (RMN ²⁹Si)**

O espectro de RMN ²⁹Si de SiO₂/NPsSm₂O₃/C-grafite/MB é mostrado na Figura

- 39410. Este espectro mostra uma região com dois picos grandes, centrado em cerca de-102 e -112 ppm, correspondendo a Q3 e Q4 e, também, a presença de picos relativos
- aos deslocamentos T³ em -66 ppm, indicando a hidrólise e a condensação incompleta. O pico T³ confirma a existência de átomos de carbono ligados ao silício, ou seja, CSi(OSi)₃.

400 Figura 10. Espectro de RMN ²⁹Si de SiO₂/*NPs*Sm₂O₃/C-grafite/MB

3.6 Estudo do comportamento térmico

402 Os resultados de TGA-DTA do SiO₂/NPsSm₂O₃/C-grafite/MB é mostrado na Figura 11.

Figura 11. Análises Termogravimétricas de SiO2/NPsSm2O3/C-grafite/MB

- A primeira perda de massa até 133,5 °C é atribuída a dessorção de água (cerca de 8,8%). No intervalo de 150 e 1200 °C, o material apresenta pouca perda de massa,
- 408 cerca de 14,5%, devido à desidroxilação do Grupos OH de óxidos [33]. Este resultado é indicativo de que o material é termicamente estável, uma vez que
- 410 somente após 525,5 °C houve um significativo perda de peso em torno de 11,9 %, devido às reações de combustão do carbono no presença de oxigênio [38], este fato
- 412 pode ser confirmado pelo DTA curva, que nesta mesma faixa de temperatura tem um pico endotérmico a 430,5 °C com perda de calor de 0,11 μ Vmg⁻¹ min⁻¹.

414 3.7. Estudos de Voltametria Cíclica e Pulso Diferencial 3.7.1. Comportamento eletroquímico de SiO₂/NPsSm₂O₃/C-grafite/MB

- Figura 12 (a), para o ET contendo SiO₂/NPsSm₂O₃/C-grafite, Figura 12 (b) e para o ET (sensor eletroquímico) SiO₂/NPsSm₂O₃/C-grafite/MB, Figura 12 (c). Na Figura
- 418 12 (c), observa-se corrente de pico anódico (Ipa) e catódico (Ipc) referente ao par redox da eletro-oxidação do mediador MB. Quando o mediador MB está ausente na
- Figura 12 (b), nenhuma corrente de pico anódico e catódico são observados. Na
 Figura 12 (b) é possível observar que SiO₂/NPsSm₂O₃/C-grafite apresenta uma
- 422 corrente anódica comparado com o eletrodo de C-grafite, sugerindo a presença de
 NPsSm₂O₃, no nanomaterial cerâmico e a melhoria da resposta eletroquímica. Na
- 424 Figura 3(c) observa a melhora da resposta eletroanalíticas com SiO₂/NPsSm₂O₃/C-grafite/MB.

Figura 12. Voltamograma cíclico. (a) C-grafite, (b) **SiO**₂/*NPs***Sm**₂**O**₃/**C-grafite** e (c)

428 SiO₂/NPsSm₂O₃/C-grafite/MB, $-0.3 \text{ a } 0.6 \text{ V } vs. \text{ Ag/AgCl e } v = 50 \text{ mV s}^{-1}$

Figura 13. Voltamograma cíclico do eletrodo de pasta de carbono contendo SiO₂/NPsSm₂O₃/C-grafite/MB. Faixa de varredura: -0,3 a 0,6 V vs. Ag/AgCl, v = 50 mV s ⁻¹ e [HCl] = 0,5 mol L⁻¹

A variação de potencial (ΔV) apresentado na Figura 13 traz dados muito importante

- do material SiO₂/NPsSm₂O₃/C-grafite/MB. Os resultados mostram picos de oxidação dos íons samário (III) entre 0,22 e 0,32 V e de redução em potenciais entre
- 436 0,14 e 0,18 V vs. Ag/AgCl. Essa característica é vantajosa, pois a redução do potencial de oxidação e redução de um material empregado como eletrodo traz um
- ganho significativo na especificidade de reações de eletrocatálise, quandoempregados com fins analíticos [39, 40]. Silveira et al. trabalhando com o óxido de
- 440 cério, notaram uma redução de potenciais, em torno de valores de potenciais de oxidação 1,0 V (Pox) e redução 0,7 V (Pred) [41, 42]. Isso favorece a determinação do
- 442 analito de interesse, pois há menor probabilidade de se causar a oxidação de interferentes pelo fato de se trabalhar em menores potenciais.

Figura 14. Voltamogramas cíclicos dos eletrodos de pasta de carbono contendo materiais (a) 446 NPsSM₂O₃ e (b) NPsSm₂O₃MB. Faixa de varredura: -0,3 a 0,6 V vs. Ag/AgCl, v = 50 mV s⁻¹ e [HCl] = 0,5 mol L⁻¹

- 448 Na Figura 14 são mostrados os voltamogramas cíclicos dos elétrodos
 SiO₂/NPsSm₂O₃/C-grafite e SiO₂/NPsSm₂O₃/C-grafite/MB, que correspondem aos
- 450 estados do elétrodo antes e após a modificação com MB (a espécie eletroativa).
 Como observado na Figura 14, o SiO₂/NPsSm₂O₃/C-grafite/MB apresentou um par
- 452 redox para o íon Sm⁺³. Após a imobilização de MB, observou-se o deslocamento do par redox do Sm⁺³ para esquerda, com potencial de oxidação de 0,20 V e de redução
- 454 em 0,14 V vs. Ag/AgCl, além do aumento da corrente capacitiva. Observa-se também um par redor bem definido entre 0,05 V (oxidação) e 0,021 V (redução),
- 456 sinais que estão associados a reações de oxirredução do MB adsorvido na superfície de SiO₂/NPsSm₂O₃/C-grafite/MB. Essas características são devidas o
- 458 SiO₂/*NPs*Sm₂O₃/C-grafite/MB apresentar uma elevada área superficial, facilitando assim, a transferência de elétrons pelo MB na superfície do eletrodo de trabalho. A
- 460 ΔE para **SiO**₂/*NPs***Sm**₂**O**₃/**C**-**grafite**/**MB** antes e após a imobilização do MB pode estar relacionado com a diferença na estrutura porosa apresentada, uma vez que
- 462 realizada adsorção, há uma diminuição do volume de poros e aumento da área eletroativa.

- 464 A literatura descreve que a espécie oxidada simbolizada por MB⁺ na Figura 14 tem coloração azul e as espécies reduzidas são incolores. Pode-se sugerir que a
- 466 imobilização da forma oxidada de MB na superfície de SiO₂/NPsSm₂O₃/C grafite/MB ocorre por reação de troca iônica [43, 44] o que pode ser observado pela
- 468 coloração azul assumida pelo material, sendo representada pelas Equações 1 e 2:

$$\equiv$$
Si-OH(s) + MB⁺ (aq) \equiv Si-O-MB⁺ (s) + H⁺ (aq) Eq. 1

470
$$\equiv$$
Sm-OH(s) + MB⁺ (aq) \equiv Sm-O-MB⁺ (s) + H⁺ (aq) Eq. 2

Para analisar a cinética das reações eletroquímicas e verificar a imobilização do azul
de meldola, foram realizadas voltametrias cíclicas com diferentes velocidades de varredura, entre 10 e 100 mV s⁻¹.

- 474 A Figura 15 mostra voltamogramas para o elétrodo de SiO₂/NPsSm₂O₃/C-grafite/MB. O aumento na taxa de varredura resulta em um aumento no nível de
- 476 corrente do voltamograma. A Figura 15 (b) apresenta a correlação linear entre o incremento da intensidade de corrente do pico anódico e pico catódico com a raiz
- 478 quadrada da velocidade de varredura (Ip *vs.* $v^{1/2}$)[,] onde escolheu-se avaliar o comportamento do primeiro par redox que se refere ao azul de meldola.
- 480 A Figura 15 (a) apresenta os voltamogramas cíclicos em diferentes velocidades de varredura, usando KCl 1,0 mol L⁻¹ como eletrólito suporte. A Figura 15 (b) mostra o
- gráfico da corrente de pico anódico (Ipa) e do pico catódico (Ipc) em função da raizquadrada da velocidade de varredura, observa-se uma relação linear, típico de um
- 484 sistema controlado por difusão [45]. Tal comportamento indica que o processo redox
 é controlado pela difusão do 4-aminofenol à superfície do eletrodo.

(b)

500 3.7.2. Comportamento eletroquímico de Glifosato com o SiO₂/NPsSm₂O₃/Cgrafite/MB

502 A Figura 16 nos mostra os voltamogramas cíclicos com parâmetros otimizados, utilizando-se diferentes materiais nos eletrodos de trabalho: eletrodo de pasta de

carbono, o eletrodo de SiO₂/NPsSm₂O₃/C-grafite e o eletrodo de SiO₂/NPsSm₂O₃/C-grafite/MB, na presença de glifosato.

Figura 16. (a) Voltamogramas cíclicos de SiO₂/NPsSm₂O₃/C-grafite/MB obtidos em pH = 7,3 ± 0,1 (solução de PBS 0,10 mol L⁻¹) com taxa de varredura de 50 mVs⁻¹ na presença de 1,0 mmol L⁻¹ de glifosato: (linha pontilhada preta) - Pasta de carbono, (linha vermelha sólida) - SiO₂/NPsSm₂O₃/C-

grafite e (linha azul sólida) - **SiO₂/NPsSm₂O₃/C-grafite/MB**. Picos anódicos: (i) = 0,3924 V; (ii) =

512 0,1165 V; (iii) = -0,3973 V e (iv) = 0,087 V vs. Ag/AgCl. (b) O detalhe mostra o gráfico da corrente de pico eletrocatalítica como uma função da concentração de glifosato em destaque para melhor

514 visualização. A seta indica a direção da varredura inicial

Os comportamentos eletroquímicos de SiO₂/NPsSm₂O₃/C-grafite e o precursor

- 516 SiO₂/NPsSm₂O₃/C-grafite/MB para sua preparação foram comparados. Os resultados mostram as Figuras 16 (a) e 16 (b) comparando os materiais, observa-se
- dois picos anódicos Epa (ii) = 0,1605 V para SiO₂/NPsSm₂O₃/C-grafite e Epa (iv) = 0,087 V para SiO₂/NPsSm₂O₃/C-grafite/MB e estes picos anódicos indicam o
- deslocamento do par redox do Sm⁺³ para esquerda, com potencial de oxidação de (ii)
 0,1605 V e (iv) -0,2667V que indicam que uma variação potencial significativa de
- 522 0,4272 V (427,2 mV), além do aumento da corrente capacitiva, com deslocamento do potencial de pico para mais valores negativos.

524 **3.7.3 Detecção de glifosato por Voltametria de Pulso Diferencial**

Após a otimização de todas as condições experimentais envolvidas no procedimento
 analítico desenvolvido, as quais estão resumidas na Tabela 1, foi construída uma curva
 analítica para o glifosato, utilizando o SiO₂/NPsSm₂O₃/C-grafite/MB.

Parâmetros	Intervalo Estudado	Valor Otimizado
Scan rate	1-50 m Vs ⁻¹	50 m Vs ⁻¹
Amplitude de Pulso	25 - 100 m V	25 m V
Tempo de Equilíbrio	0 - 10 s	5 s
Potencial Inicial	-1.0 de -0.6 V vs. Ag/AgCl	0.0 V
Potencial Final	0.4 de 1.4 V vs. Ag/AgCl	-0.15 V
Composição do Eletrodo	80:20 %	82, 7 % (w/w)
	50:50 %	7,3 % C-grafite e 10 % óleo
	40:60 %	mineral
Eletrólito Suporte e pH	5.0 - 8.0	PBS (0,10 mol L ⁻¹) e 7,3

528

A Figura 17 apresenta os voltamogramas de pulso diferencial obtidos com o

530 SiO₂/NPsSm₂O₃/C-grafite/MB, contendo diferentes concentrações de glifosato. Um pico foi observado que corresponde ao processo de oxidação [MB \rightarrow MB⁺]: um pico

532 bem definido em -0,072 V vs. Ag/AgCl. A intensidade da corrente catalítica aumentou significativamente com o aumento da concentração de glifosato,

534 demonstrando a atividade eletrocatalítica do nanomaterial.

Figura 17. (a) Voltamogramas de pulso diferencial para SiO₂/NPsSm₂O₃/C-grafite/MB obtidos em pH = 7,3 ± 0,1 (solução de PBS 0,10 mol L⁻¹) na presença de diferentes concentrações de glifosato (mmol.L⁻¹) (a) 0,99; (b) 2,00; (c) 2,99, (d) 3,98; (e) 4,98; (f) 5,96; (g) 6,95 e (h) 7,94, v = 50 mVs⁻¹.
(b) Figura inserida: a equação de regressão linear foi expressa da seguinte forma: *j* / µA cm⁻² = -2,41 × 10⁻⁶ (± 1,29,10⁻⁸) + (-0,10 (± 2,42 x 10⁻³) [Glifosato] / mmol L⁻¹ com um coeficiente de correlação de 0,9963 (n = 8). A inserção mostra o gráfico da corrente de pico eletrocatalítica como uma função da concentração de glifosato com desvio padrão em triplicado. A seta indica a direção da varredura inicial

No estudo da oxidação eletrocatalítica de glifosato por meio de voltametria de

redissolução de pulso diferencial, os resultados de Yu Cao et al. [8] mostram que o

material Cu-BTC [cobre(II)-benzeno-1,3,5-tricarboxilato] usado como sensor exibe

- 548 limite de detecção ultrabaixo $(1,4 \times 10^{-13} \text{ mol } \text{L}^{-1})$ e ampla faixa de detecção $(1,0 \times 10^{-12} \text{ a } 1,0 \times 10^{-9} \text{ mol } \text{L}^{-1} \text{ e } 1,0 \times 10^{-9} \text{ a } 1,0 \times 10^{-5} \text{ mol } \text{L}^{-1})$. María del Carmen Aguirre
- et al. [46] estudaram a oxidação eletrocatalítica de glifosato por meio de voltametria de pulso diferencial (no intervalo de potencial entre -0.4 V e -0.7 V) e encontraram
- um limite de quantificação para o glifosato de $(0,62 \pm 0,02) \mu M [(105 \pm 3) \mu g L^{-1}]$ e um limite de determinação baixo de $(0,186 \pm 0,004) \mu M (31 (\mu g L^{-1}) (31 g/L), obtidos$
- 554 do sistema Cu/GC (eletrodo de trabalho carbono vítreo) em solução tampão de ácido acético (ABS) pH 6 e íons Cu²⁺ 0,1 mM.

556 4. CONCLUSÃO

Neste trabalho, desenvolvemos um novo nanomaterial através da imobilização do

- corante catiônico MB. O nanomaterial contém Dióxido de Silício (SiO₂),
 nanopartíclias de Óxido de Samário (NPsSm₂O₃) e o corante Azul de Meldola (MB),
- 560 denominado SiO₂/NPsSm₂O₃/C-grafite/MB, que mostrou um nanomaterial potencial para construção de elétrodos de trabalho de pasta de carbono para a

562 detecção de agrotoxicos, como o glifosato.

- O SiO₂/NPsSm₂O₃/C-grafite/MB preparado foi estudado, mostrando potenciais na
 faixa de intervalo de -0,2 a 0,5 V vs. Ag/AgCl, com v = 50 mV s⁻¹. A imobilização do MB deslocou o par redox do Sm⁺³ para esquerda, com P_{ox} = 0,20 V e de P_{red} =
- 0,14 V, além do aumento da corrente capacitiva. Também, observou-se um par redox
 bem definido entre 0,05 V (oxidação) e 0,021 V (redução), picos que estão
- 568 associados a reações de oxirredução do MB adsorvido na superfície do material SiO₂/NPsSm₂O₃/C-grafite.
- 570 Usando VPD para SiO₂/NPsSm₂O₃/C-grafite/MB, a relação linear foi observada entre j/μ A.cm⁻² = -2.41×10⁻⁶ (±1.29.10⁻⁸) + (-0.10 (± 2.42x10⁻³) [Glyphosate] /
- 572 μ mol L⁻¹. O limite de detecção foi 0,051 μ mol L⁻¹ (50,84 nmol L⁻¹). O resultado mostrou uma resposta de corrente linear entre 0.99 7.94 μ mol L⁻¹de glifosato, com
- 574 $R^2 = 0,9963 \text{ e } n = 8. \text{ O LOD foi de } 0,169 \text{ } \mu\text{mol } L^{-1} (169,47 \text{ } n\text{mol } L^{-1}).$

Este trabalho revela um novo campo de aplicação promissor para o

576 SiO₂/NPsSm₂O₃/C-grafite/MB quando imobilizados em corantes, sua capacidade de

ser utilizado na eletroquímica e/ou eletrocatálise, como modificador de eletrodos,

578 confecção de sensores e biossensores, além de outras aplicações.

REFERÊNCIAS

580	1.	Viegas TE de S (2016) Risco, Meio Ambiente e Agrotóxicos no Maranhão.
		Rev Direito e Sustentabilidade.
582		https://doi.org/10.26668/indexlawjournals/2525-9687/2016.v2i2.1307
	2.	DOS SANTOS CL, DA SILVA HSVP, DE ANDRADE GV, NUNES GS
584		(2012) AVALIAÇÃO DA CONTAMINAÇÃO DE CORPOS D'ÁGUA
		ADJACENTES A ÁREAS AGRÍCOLAS DA ILHA DE SÃO LUÍS (MA)
586		POR AGROTÓXICOS. Pestic Rev Ecotoxicologia e Meio Ambient.
		https://doi.org/10.5380/pes.v22i1.30801
588	3.	GASPAR SMFS, NUNES GS, PINHEIRO CUB, DO AMARANTE JÚNIOR
		OP (2005) AVALIAÇÃO DE RISCO DE PESTICIDAS APLICADOS NO
590		MUNICÍPIO DE ARARI, MARANHÃO, BRASIL: BASE PARA
		PROGRAMA DE CONTROLE AMBIENTAL DO RIO MEARIM. Pestic
592		Rev Ecotoxicologia e Meio Ambient. https://doi.org/10.5380/pes.v15i0.4500
	4.	Caldas SS, Gonçalves FF, Primel EG, et al (2011) Modern techniques of
594		sample preparation for pesticide residues determination in water by liquid
		chromatography with detection by diode array and mass spectrometry. Quim
596		Nova. https://doi.org/10.1590/S0100-40422011000900021
	5.	Alves SA, Ferreira TCR, Migliorini FL, et al (2013) Electrochemical
598		degradation of the insecticide methyl parathion using a boron-doped diamond
		film anode. J Electroanal Chem.
600		https://doi.org/10.1016/j.jelechem.2013.05.001
	6.	Muñoz JP, Bleak TC, Calaf GM (2020) Glyphosate and the key characteristics
602		of an endocrine disruptor: A review. Chemosphere
	7.	Heider EC, Trieu K, Diaz VM, et al (2013) An indium tin oxide electrode
604		modified with gold nanorods for use in potential-controlled surface plasmon
		resonance studies. Microchim Acta. https://doi.org/10.1007/s00604-013-1017-

608	8.	Cao Y, Wang L, Shen C, et al (2019) An electrochemical sensor on the hierarchically porous Cu-BTC MOF platform for glyphosate determination.
		Sensors Actuators, B Chem. https://doi.org/10.1016/j.snb.2018.12.064
610	9.	Xue X, Wei Q, Wu D, et al (2014) Determination of methyl parathion by a
612		Electrochim Acta. https://doi.org/10.1016/j.electacta.2013.11.075
	10.	Dos Santos VMR, Donnici CL, DaCosta JBN, Caixeiro JMR (2007)
614		Compostos organofosforados pentavalentes: Histórico, métodos sintéticos de preparação e aplicações como inseticidas e agentes antitumorais. Ouim. Nova
616	11.	Lima T de S, Simões FR, Codognoto L (2017) Simultaneous voltammetric
		determination of carbendazim and carbaryl in medicinal plant infusions with a
618		boron-doped diamond electrode. Int J Environ Anal Chem 97:768–782. https://doi.org/10.1080/03067319.2017.1354992
620	12.	Wang M, Huang J, Wang M, et al (2014) Electrochemical nonenzymatic
622		sensor based on CoO decorated reduced graphene oxide for the simultaneous
022		https://doi.org/10.1016/j.foodchem.2013.11.046
624	13.	Serra OA, De Lima JF, De Sousa Filho PC (2015) A luz e as Terras Raras.
		Rev Virtual Quim. https://doi.org/10.5935/1984-6835.20150012
626	14.	Rai S, Bokatial L, Dihingia PJ (2011) Effect of CdS nanoparticles on
		fluorescence from Sm3+doped SiO2glass. J Lumin.
628		https://doi.org/10.1016/j.jlumin.2011.01.006
	15.	Hodgson GK, Impellizzeri S, Hallett-Tapley GL, Scaiano JC (2015)
630		Photochemical synthesis and characterization of novel samarium oxide
		nanoparticles: Toward a heterogeneous Brønsted acid catalyst. RSC Adv.
632		https://doi.org/10.1039/c4ra14841j
	16.	Zhu W, Xu L, Ma J, et al (2009) Effect of the thermodynamic properties of

634		W/O microemulsions on samarium oxide nanoparticle size. J Colloid Interface
		Sci. https://doi.org/10.1016/j.jcis.2009.08.011
636	17.	Benvenutti E V., Moro CC, Costa TMH, Gallas MR (2009) Materiais híbridos
		à base de sílica obtidos pelo método sol-gel. Quim. Nova
638	18.	Zou H, Wu S, Shen J (2008) Polymer/Silica Nanocomposites: Preparation,
		characterization, propertles, and applications. Chem. Rev.
640	19.	Mutharani B, Sakthinathan S, Chen SM, et al (2018) Preparation of samarium
		oxide nanoparticles decorated functionalized multiwall carbon nanotubes
642		modified electrode for the electrochemical determination of catechol. Int J
		Electrochem Sci. https://doi.org/10.20964/2018.07.20
644	20.	Govindasamy M, Chen SM, Mani V, et al (2017) Molybdenum disulfide
		nanosheets coated multiwalled carbon nanotubes composite for highly
646		sensitive determination of chloramphenicol in food samples milk, honey and
		powdered milk. J Colloid Interface Sci.
648		https://doi.org/10.1016/j.jcis.2016.09.029
	21.	Maroneze CM, Arenas LT, Luz RCS, et al (2008) Meldola blue immobilized
650		on a new SiO2/TiO2/graphite composite for electrocatalytic oxidation of
		NADH. Electrochim Acta 53:4167–4175.
652		https://doi.org/10.1016/j.electacta.2007.12.072
	22.	Hope-Roberts M, Horobin RW (2012) Biomedical applications and chemical
654		nature of three dyes first synthesized by Raphael Meldola: Isamine blue,
		Meldola's blue and naphthol green B. Biotech Histochem.
656		https://doi.org/10.3109/10520295.2011.639722
	23.	Canevari TC, Vinhas RCG, Landers R, Gushikem Y (2011)
658		SiO2/SnO2/Sb2O5 microporous ceramic material for immobilization of
		Meldola's blue: Application as an electrochemical sensor for NADH. Biosens
660		Bioelectron. https://doi.org/10.1016/j.bios.2010.10.020
	24.	Zhu L, Zhai J, Yang R, et al (2007) Electrocatalytic oxidation of NADH with
662		Meldola's blue functionalized carbon nanotubes electrodes. Biosens

		Bioelectron. https://doi.org/10.1016/j.bios.2006.12.027
664	25.	AMARAL EI, ROSA ACS, SARCINELLI PDN (2013) ESTUDO DA
		EXPOSIÇÃO AMBIENTAL AO GLIFOSATO NA ÁREA AGRÍCOLA DA
666		SERRINHA DO MENDANHA. Pestic Rev Ecotoxicologia e Meio Ambient.
		https://doi.org/10.5380/pes.v23i0.34998
668	26.	Mariotti MP, Riccardi CDS, Fertonani FL, Yamanaka H (2006) Strategies for
		developing NADH detector based on meldola blue in different immobilization
670		methods: A comparative study. J Braz Chem Soc.
		https://doi.org/10.1590/S0103-50532006000400009
672	27.	Maroneze CM, Luz RCS, Landers R, Gushikem Y (2010) SiO 2/TiO 2/Sb 2O
		5/graphite carbon ceramic conducting material: Preparation, characterization,
674		and its use as an electrochemical sensor. J Solid State Electrochem.
		https://doi.org/10.1007/s10008-009-0796-3
676	28.	Jadon N, Jain R, Sharma S, Singh K (2016) Recent trends in electrochemical
		sensors for multianalyte detection – A review. Talanta
678	29.	da Fonseca BT, D'Elia E, Júnior JMS, et al (2018) Study of the characteristics,
		properties and characterization of new SiO2/TiO2/Sb2O5 ternary oxide
680		obtained by the sol-gel process. J Mater Sci Mater Electron.
		https://doi.org/10.1007/s10854-017-8128-3
682	30.	Blasques RV, Pereira MAA, Mendes AMRV, et al (2020) Synthesis and
		characterization of a new ceramic nanomaterial SiO2/NPsSm2O3/C-graphite
684		for the development of electrochemical sensors. Mater Chem Phys 243:.
		https://doi.org/10.1016/j.matchemphys.2019.122255
686	31.	Yu H-F, Wang S-M (2000) Effects of water content and pH on gel-derived
		TiO2-SiO2. J Non Cryst Solids 261:260-267. https://doi.org/10.1016/S0022-
688		3093(99)00658-4
	32.	Finnie KS, Thompson JG, Withers RL (1994) Phase transitions in cristobalite
690		and related structures studied by variable temperature infra-red emission
		spectroscopy. J Phys Chem Solids 55:23-29. https://doi.org/10.1016/0022-

692 3697(94)90180-5

	33.	Costa TMH, Gallas MR, Benvenutti EV, da Jornada JAH (1997) Infrared and
694		thermogravimetric study of high pressure consolidation in alkoxide silica gel
		powders. J Non Cryst Solids 220:195–201. https://doi.org/10.1016/S0022-
696		3093(97)00236-6

- 34. Dezfuli AS, Ganjali MR, Naderi HR (2017) Anchoring samarium oxide
 698 nanoparticles on reduced graphene oxide for high-performance supercapacitor.
 Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2017.01.021
- Nguyen T-D, Mrabet D, Do T-O (2008) Controlled Self-Assembly of Sm 2 O
 3 Nanoparticles into Nanorods: Simple and Large Scale Synthesis using Bulk
 Sm 2 O 3 Powders. J Phys Chem C 112:15226–15235. https://doi.org/10.1021/jp804030m
- Narasimharao K, Ali TT (2020) Influence of synthesis conditions on physicochemical and photocatalytic properties of rare earth (Ho, Nd and Sm) oxides. J
 Mater Res Technol. https://doi.org/10.1016/j.jmrt.2019.12.014
- 37. Dehelean A, Rada S, Zhang J (2020) Determination of the lead environment in
 samarium Lead oxide-borate glasses and vitroceramics using XANES and
 EXAFS studies. Radiat. Phys. Chem.
- Rathnayake RMNM, Wijayasinghe HWMAC, Pitawala HMTGA, et al (2017) Synthesis of graphene oxide and reduced graphene oxide by needle platy
 natural vein graphite. Appl Surf Sci.

https://doi.org/10.1016/j.apsusc.2016.10.008

- Amonette JE, Matyáš J (2017) Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review. Microporous Mesoporous
 Mater.
- 40. Gupta R, Kumar A (2008) Molecular imprinting in sol-gel matrix. Biotechnol.
 718 Adv.
 - 41. Silveira G, Morais AD, Villis PCM, et al (2012) Electrooxidation of nitrite on

720		a silica-cerium mixed oxide carbon paste electrode. J Colloid Interface Sci 369:. https://doi.org/10.1016/j.jcis.2011.11.060
722	42.	Kooshki H, Rashidiani J, Kamali M, et al (2018) Ultrahigh sensitive enhanced-electrochemiluminescence detection of cancer biomarkers using
724		silica NPs/graphene oxide: A comparative study. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2017.11.011
726	43.	Scotti R, Lima EC, Benvenutti E V., et al (2006) Azul de metileno imobilizado na celulose/TiO2 e SiO 2/TiO2: Propriedades eletroquímicas e
728		planejamento fatorial. Quim Nova. https://doi.org/10.1590/S0100- 40422006000200006
730	44.	Dias SLP, Fujiwara ST, Gushikem Y, Bruns RE (2002) Methylene blue immobilized on cellulose surfaces modified with titanium dioxide and
732		titanium phosphate: Factorial design optimization of redox properties. J Electroanal Chem. https://doi.org/10.1016/S0022-0728(02)01018-5
734	45.	Benvenutti EV, Moro CC, Costa TMH, Gallas MR (2009) Silica based hybrid materials obtained by the sol-gel method Materiais híbridos à base de sílica
736		obtidos pelo método sol-gel. Quim Nova
738	46.	Aguirre M del C, Urreta SE, Gomez CG (2019) A Cu2+-Cu/glassy carbon system for glyphosate determination. Sensors Actuators, B Chem. https://doi.org/10.1016/j.snb.2018.12.124
740		
742		
744		
746		
748		
750		
752		
754		

756	

- 786 Capítulo II: ANEXO

Materials Chemistry and Physics 243 (2020) 122255 Contents lists available at ScienceDirect

Materials Chemistry and Physics

journal homepage: www.elsevier.com/locate/matchemphys

Synthesis and characterization of a new ceramic nanomaterial SiO₂/ NPsSm₂O₃/C-graphite for the development of electrochemical sensors

Rodrigo Vieira Blasques^a, Maria Alessandra Azevedo Pereira^b, Ana Marcia Rabelo Vieira Mendes^b, Nestor Everton Mendes Filho^a, Wolia Costa Gomes^b, Leliz Ticona Arenas^c, Jean-Louis Marty^d, María Isabel Pividori Gurgo^e, Gilvanda Silva Nunes^a, Paulo Cesar Mendes Villis^{b,}

^a Nucleus of Pesticide Residue Analysis-NARP, Federal University of Maranhão – UFMA, 65.080-040, São Luís, MA, Brazil
^b Electrochemistry and Biotechnology Laboratory – EBL, University of CEUMA - UNICEUMA, 65.065-470, São Luís, MA, Brazil
^c Laboratory of Solids and Surfaces, Instituto de Química, Universidade Federal do Rio Grande do Sui, 9510-970, Porto Alegre, RS, Brazil
^d BAE (Biocapteurs-Analyses-Environmento), Université da Perignan Via Dominia, 52 Avenue Paul Alduy, Perpignan Cedex, 66860, France
^e Grup de Sensors e Biosensors, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain

HIGHLIGHTS

 \bullet A new ceramic nanomaterial SiO_2/NPsSm_2O_3/C-graphite was synthetized.

Addition of NPsSm₂O₃ has resulted in increased specific surface area.

• The structural and thermal properties of the nanomaterial were studied.

The electroactivity was investigated, showing as a promising material.